Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis.

نویسندگان

  • Rosalie M Luiten
  • Jérome Péne
  • Hans Yssel
  • Hergen Spits
چکیده

Human somatic cells have a limited life span in vitro. Upon aging and with each cell division, shortening of telomeres occurs, which eventually will lead to cell cycle arrest. Ectopic hTERT expression has been shown to extend the life span of human T cells by preventing this telomere erosion. In the present study, we have shown that ectopic hTERT expression extends the life span of CD4+ T helper type 1 or 2 and regulatory T-cell clones and affected neither the in vitro cytokine production profile nor their specificity for antigen. In mixed cell cultures, ectopic hTERT-expressing clones were found to expand in greater numbers than untransduced cells of the same replicative age. This ectopic hTERT-induced growth advantage was not due to an enhanced cell division rate or number of divisions following T-cell receptor-mediated activation, as determined in carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeling experiments. Moreover, the susceptibility to activation-induced cell death of both cell types was similar. However, cultures of resting hTERT-transduced T cells contained higher frequencies of Bcl-2-expressing cells and lower active caspase-3-expressing cells, compared with wild-type cells. Furthermore, hTERT-transduced cells were more resistant to oxidative stress, which causes preferential DNA damage in telomeres. Taken together, these results show that ectopic hTERT expression not only protects proliferating T cells from replicative senescence but also confers resistance to apoptosis induced by oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENE THERAPY Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential

In most human somatic cells telomeres progressively shorten with each cell division eventually leading to chromosomal instability and cell senescence. The loss of telomere repeats with cell divisions may also limit the replicative life span of antigen-specific T lymphocytes. Recent studies have shown that the replicative life span of various primary human cells can be prolonged by induced expre...

متن کامل

Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential.

In most human somatic cells telomeres progressively shorten with each cell division eventually leading to chromosomal instability and cell senescence. The loss of telomere repeats with cell divisions may also limit the replicative life span of antigen-specific T lymphocytes. Recent studies have shown that the replicative life span of various primary human cells can be prolonged by induced expre...

متن کامل

Human Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation

Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...

متن کامل

Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation- and stress-induced p53-dependent apoptosis.

The fundamental role of telomerase is to protect telomere ends and to maintain telomere length during replication; hence, telomerase expression is high in stem cells but reduced upon differentiation. Recent studies indicate that telomerase might play other roles besides telomere maintenance. We have investigated the role of telomerase in cellular differentiation and death. Here, we show that ec...

متن کامل

Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis.

We have previously shown that the protein subunit of telomerase, hTERT, has a bonafide N-terminal mitochondrial targeting sequence, and that ectopic hTERT expression in human cells correlated with increase in mtDNA damage after hydrogen peroxide treatment. In this study, we show, using a loxP hTERT construct, that this increase in mtDNA damage following hydrogen peroxide exposure is dependent o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 101 11  شماره 

صفحات  -

تاریخ انتشار 2003